

Effective from Session:									
Course Code	EC601	EC601 Title of the Course RF Circuit Design & Technology							
Year	2	Semester	3	3	1	0	4		
Pre-Requisite	Integrated Circuit	Co-requisite	NA						
Course Objectives	apply Maxim • To learn the amplifier dest • To learn the using Y paran • To understa diffusion resi	um RF power transfer the basic building blocks in ign and the oscillator, me analysis of the transistor neters, MOS transistor l nd the concept and design	n RF systems-RF transmitters and receivers. Can understand ixer design and input & output characteristics of RF amplifi or equivalent circuit-Y parameters, S parameters, the MOS t biasing-design using S parameters and power amplifier design of sheet resistance, skin effect, parasitic capacitance, para	l the ba er. ransist gn.	asic low or biasi	v noise ng-desi	gn		

Course Outcomes

CO1	Students shall be able to understand RF and wireless technology, spectrum allocation, identify issues in the design of RF circuits, apply maximum
	RF power transfer theorem.
CO2	For a given RF system, student shall be able to analyze basic building blocks in RF systems-RF transmitters and receivers and evaluate the low
	noise amplifier design and predict the oscillator, mixer design and input & output characteristics of RF amplifier.
CO3	For a given RF system, student shall be able to analyze the transistor equivalent circuit-Y parameters, S parameters. Examine and analyze the
	MOS transistor biasing-design using Y parameters, MOS transistor biasing-design using S parameters and power amplifier design.
CO4	Students shall be able to identify the technology back end and metallization in IC technologies and will be able to understand sheet resistance,
	skin effect, parasitic capacitance, parasitic inductance and diffusion resistors.
CO5	For a given a RF system, student shall be able to design the inductors and transformers and will be able to understand the self-resonance of
	inductors, the quality factor of an inductor, characterization of an inductor, layout of spiral inductors, isolating the Inductor, the use of slotted
	ground shields. Analyze the basic transformer layouts in IC technologies and radio architectures of GSM, CDMA and UMTS.

1 Introduction Introduction to RF and wireless technology, spectrum allocation, issues in the design of RF circuits, PCB, Electronic chips, Transmission media and reflections, Maximum RF power 8 1 2 RF circuit design Basic building blocks in RF systems – RF Transmitters and receivers, Antenna, impedance matching, Noise, Low noise amplifier design and Linearity, Oscillator, Mixer design, Filter design, Input & output characteristics of RF Amplifier, Nonlinearity and time variance, Intersymbol interference, Random process and noise, Sensitivity and dynamic range, Passive impedance transformation; Issues in RFIC Design. 8 2 3 The Transistor Equivalent Circuit Parameters, SP arameters, Understanding RF transistor data sheets, MOS Transistor Biasing - Design Using Y Parameters, Sor Transistor Biasing, Power Amplifier Design - Matching to Coaxial Feed lines, Automatic Shutdown Circuitry, Broadband Transformers 8 4 4 The Technology Back End and Metallization in IC Technologies, Sheet Resistance and the Spiral Equivalent Sint of Gon-Chip Spiral Inductors, and Transformers, Design of Inductors, and Transformers, Poly Capacitons, Poly Capacitons, Poly Capacitons, Poly Resistors and Diffusion Resistors, Metal-Insulator-Metal Capacitors, Poly Capacitons, Spirals, Self-Resonance of Inductors, Inductors, Curant Handling in Metal Lines, Poly Resistors and Diffusion Resistors, The Quality Factor of an Inductor, Characterization of an Inductor, Layout of Spiral Inductors, Sone Caluating the Inductance of Spirals, Self-Resonance of Inductors, Sone Chip Transmission Line, Transmission Line, Transmission Line, Transmission Line, Transmission Line, Some Common De-Embedding Techniques, radio architectures of GS	Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
2RF circuit designmatching, Noise, Low noise amplifier design and Linearity, Oscillator, Mixer design, Filter design, Input & output characteristics of RF Amplifier, Nonlinearity and time variance, Inter- symbol interference, Random process and noise, Sensitivity and dynamic range, Passive impedance transformation; Issues in RFIC Design.823The Transistor Equivalent CircuitY Parameters, Understanding RF transistor data sheets, MOS Transistor Biasing - Design Using Y Parameters, MOS Transistor Biasing, Power Amplifier Design - Matching to Coaxial Feed lines, Automatic Shutdown Circuitry, Broadband Transformers834The Technology Back End and Metallization in IC Technologies, Sheet Resistance and the Skin Effect, Parasitic Capacitance, Parasitic Inductance, Current Handling in Metal Lines, Poly Resistors and Diffusion Resistors, Metal-Insulator-Metal Capacitors.845Applications of On-Chip Spiral Inductors, and Transformers, Some Basic Lumped Models for Inductors, Calculating the Inductance of Spirals, Self-Resonance of Inductors, The Quality Factor of an Inductor, Characterization of 	1	Introduction	circuits, PCB, Electronic chips, Transmission media and reflections, Maximum RF power	8	1
3The Transistor Equivalent Circuit- Design Using Y Parameters, MOS Transistor Biasing - Design Using S Parameters, RF Power Transistor Characteristics - Transistor Biasing, Power Amplifier Design - Matching to Coaxial Feed lines, Automatic Shutdown Circuitry, Broadband Transformers8344The Technology Back End and Metallization in IC Technologies, Sheet Resistance and the Skin Effect, Parasitic Capacitance, Parasitic Inductance, Current Handling in Metal Lines, Poly Resistors and Diffusion Resistors, Metal-Insulator-Metal Capacitors, Poly Capacitors.845Applications of On-Chip Spiral Inductors and Transformers, Design of Inductors and Transformers, Some Basic Lumped Models for Inductor, Characterization of an Inductor, Layout of Spiral Inductors, Isolating the Inductor, Characterization of an Inductors, Basic Transformer Layouts in IC Technologies, Multilevel Inductors, Characterizing Transformers for Use in ICs, On-Chip Transmission Lines, Characterizing Transformers for Use in ICs, On-Chip Transmission Lines, Some Common De-Embedding Techniques, radio architectures of GSM, CDMA and UMTS.85	2	RF circuit design	matching, Noise, Low noise amplifier design and Linearity, Oscillator, Mixer design, Filter design, Input & output characteristics of RF Amplifier, Nonlinearity and time variance, Inter- symbol interference, Random process and noise, Sensitivity and dynamic range, Passive	8	2
4 Skin Effect, Parasitic Capacitance, Parasitic Inductance, Current Handling in Metal Lines, Poly Resistors and Diffusion Resistors, Metal-Insulator-Metal Capacitors, Poly Capacitors. 8 4 5 Applications of On-Chip Spiral Inductors and Transformers, Design of Inductors, Calculating the Inductance of Spirals, Self-Resonance of Inductors, The Quality Factor of an Inductor, Characterization of an Inductor, Layout of Spiral Inductors, Isolating the Inductor, The Use of Slotted Ground Shields and Inductors, Basic Transformer Layouts in IC Technologies, Multilevel Inductors, Characterizing Transformers for Use in ICs, On-Chip Transmission Lines, Effect of Transmission Line, Transmission, High High-Frequency Measurement of On-Chip, Passives, Some Common De-Embedding Techniques, radio architectures of GSM, CDMA and UMTS. 8 5 Reference Books:	3		- Design Using Y Parameters, MOS Transistor Biasing - Design Using S Parameters, RF Power Transistor Characteristics - Transistor Biasing, Power Amplifier Design - Matching to	8	3
5 Transformers, Some Basic Lumped Models for Inductors, Calculating the Inductance of Spirals, Self-Resonance of Inductors, The Quality Factor of an Inductor, Characterization of an Inductor, Layout of Spiral Inductors, Isolating the Inductor, The Use of Slotted Ground Shields and Inductors, Basic Transformer Layouts in IC Technologies, Multilevel Inductors, Characterizing Transformers for Use in ICs, On-Chip Transmission Lines, Effect of Transmission Line, Transmission, High High-Frequency Measurement of On-Chip, Passives, Some Common De-Embedding Techniques, radio architectures of GSM, CDMA and UMTS. 8 5 Reference Books:	4		Skin Effect, Parasitic Capacitance, Parasitic Inductance, Current Handling in Metal Lines,	8	4
Reference Books:	5		Applications of On-Chip Spiral Inductors and Transformers, Design of Inductors and Transformers, Some Basic Lumped Models for Inductors, Calculating the Inductance of Spirals, Self-Resonance of Inductors, The Quality Factor of an Inductor, Characterization of an Inductor, Layout of Spiral Inductors, Isolating the Inductor, The Use of Slotted Ground Shields and Inductors, Basic Transformer Layouts in IC Technologies, Multilevel Inductors, Characterizing Transformers for Use in ICs, On-Chip Transmission Lines, Effect of Transmission Line, Transmission, High High-Frequency Measurement of On-Chip, Passives,	8	5
1. RF circuit design by Chris Bowick . Elsevier's Science & Technology Rights Department in Oxford, UK.	Referen	ce Books:	Some common 20 2moodding roomiquos, radio alemeetares or COM, CDMP and OMPS.		
······································	1. R	F circuit design by Chris B	owick, Elsevier's Science & Technology Rights Department in Oxford, UK.		

2. " RF Microelectronics by Behzard Razavi, Prentice Hall Ptr.

3. Radio Frequency Integrated Circuit Design, John Rogers, Calvin Plett, Artech House.

e-Learning Source:

						С	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of COs	s with PO	s and PSO	Os)			
PO- PS O CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO1	PSO2	PSO3	PSO5	PSO6	PSO7
CO 1	3	2						1				1	3	3	2			
CO 2	3	2										1	2	3	2			
CO 3	3	3	3	2	1							1	3	3	2			
CO 4	3	2	1	2								1	3	3	2			
CO 5	3	2	1	1	1				1			1	3	3	2			
	1-				Lo	w Cori	elatior	n; 2- M	oderat	e Corre	lation;	3- Substa	ntial Cor	relation				

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session: 2016-17							
Course Code	EC602	Title of the Course	Advanced DSP	L	Т	Р	С
Year	II	Semester	III	3	1	0	4
Pre-Requisite	Signals and systems, DSP and its applications	Co-requisite					
Course Objectives	 To utime To le To u To u To u samp To k 	nderstand the basi systems. earn, how to desig nderstand the desinderstand signific oling. now the elementa	f discrete time signals & systems. ic idea of classifications of a signal and to define in IIR filter and to know the concept of matched 2 igning of FIR filter. cance of multi-rate signal processing, down samp ry knowledge regarding signals and systems in or he and frequency domain	Z- Tra ling a	ansfor nd up	m.	ent

	Course Outcomes
CO1	For a particular system, student should be able to deal with Discrete time signals and systems, Characterization & Classification of signals, Time domain characterization of LTI Discrete – Time systems, Discrete –Time Fourier Transform, Discrete Fourier Transform, Fast Fourier Transform, Z-Transform
CO2	For designing IIR filter, a student should overcome the working and realization of Aapproximation of derivatives, Design of IIR filter using impulse invariance Technique, Design of IIR filter using bilinear transformation, matched z-transform. Realization of Digital Filters: Direct form I and II realization, signal flow graph, Cascade form and Parallel form Structure.
CO3	For a particular window function, student should be having a clear idea of solving Rectangular window, Triangular window, Hanning window, Blackman window and Kaiser window. Realization of FIR Filters: Transversal structure, Linear phase realization and Polyphase realization of FIR filter
CO4	He/she should be able to know the concept of Decimation and Interpolation and to know the multistage implementation of sampling rate conversion
CO5	For good signal and systems, a student should know the statistical characteristics of a Random Signal, Cross- correlation of random processes and Cross-covariance of random processes and the Power Density Spectrum.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Review of Signals and systems.	Discrete time signals and systems, Characterization & Classification of signals, Time domain characterization of LTI Discrete – Time systems, Discrete –Time Fourier Transform, Discrete Fourier Transform, Fast Fourier Transform, Z-Transform	8	CO1				
2	IIR and FIR Filter	Approximation of derivatives, Design of IIR filter using impulse invariance Technique, Design of IIR filter using bilinear transformation, matched z- transform. Realization of Digital Filters: Direct form I and II realization, signal flow graph, Cascade form and Parallel form Structure.	8	CO2				
3	Types of windows and realization of FIR filter.	Rectangular window, Triangular window, Hanning window, Hamming window, Blackman window and Kaiser window. Realization of FIR Filters: Transversal structure, Linear phase realization and Polyphase realization of FIR filter.	8	CO3				
4	Sampling and its application	Decimation and Interpolation, sampling theorem and its application in signal processing	8	CO4				
5	Random Signals and their parameters	Statistical characteristics of a Random Signal, Cross-correlation of random processes and Cross-covariance of random processes and the Power Density Spectrum.	8	CO4				
Reference Books:								
• Digi	Digital Signal Processing Principles Algorithms and Applications: John G. Proakis, Dimitris G. Manolakis							

• Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G. Manolakis, Pearson Education / PHI, 2007.

• Discrete Time Signal Processing – A. V. Oppenheim and R.W. Schaffer, PHI, 2009.

• Fundamentals of Digital Signal Processing – Loney Ludeman, John Wiley, 2009

٠	Digital Signal	Processing – Fi	ndamentals and Applications – Li Tan, Elsevier, 2008.	
	0 0	0		

e-Learning Source:

Lectures from You tube and presentations from various repositories like slide share etc.

						C	ourse A	Articul	ation N	Matrix:	(Mappi	ng of CO	s with PO	s and PSO	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	2	3	1	1	1	2	3	2	3								
CO2	2	2	3	3	2	3	1	1	1	1								
CO3	2	3	3	2	3	3	2	1	1	2								
CO4	2	3	3	2	3	3	2	1	1	2								
CO5	3	3	3	2	1	2	3	3	1	2								

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Т

Effective from Session:							
Course Code	EC603	Title of the Course	Advanced Digital Image Processing	L	Т	Р	С
Year	II	Semester	III	3	1	0	4
Pre-Requisite	Digital Image Processing	Data Signal Processing					
Course Objectives	To under enhancer 2. To under on image 3. To under geometri 4. To under	stand and apply e nent, restoration a stand about the ne e. stand the feature c attributes. stand the applicat	processing in digital image. To learn 2D convolu- dge detection technique on an image. To understand and segmentation. eed of compression. What are techniques and how extraction its representation and to learn the conc- tions of image processing techniques medical ima- nd image forensics.	and a v can ept o	bout i it be a f topo	mage applie logica	d I,

	Course Outcomes
CO1	Students shall be able to understand the digital modulation techniques and represent it into mathematical form.
CO2	For the error control in digital communication network, student shall be able to analyze the error in the network and
	applying the predefined coding method for the detection and correction of error in the network.
CO3	Student shall be able to understand the basics of data communication in the network. To achieve it, they will
	understand and Examine the OSI and TCP/IP Model and analyze the services provided to data link layer.
CO4	Students shall be able to understand and analysis of various protocols as well as fast Ethernet and internetworking
	devices.
CO5	Student shall be able understand the function of network layer, transport layer and learn how to apply it by using
	Dijkstra Algorithm. They will have the knowledge on network security.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Fundamentals of Digital Image Processing	Elements of visual perception, brightness, contrast, hue, saturation, mach band effect, 2D image transforms-DFT, DCT, KLT, and SVD. Image enhancement in spatial and frequency domain, Review of morphological image processing	8	CO-1
2	Segmentation	Edge detection, Thresholding, Region growing, Fuzzy clustering, Watershed algorithm, Active contour methods, Texture feature based segmentation, Model based segmentation, Atlas based segmentation, Wavelet based Segmentation methods	8	CO-2
3	Feature Extraction	First and second order edge detection operators, Phase congruency, Localized feature extraction detecting image curvature, shape features Hough transform, shape skeletonization, Boundary descriptors, Moments, Texture descriptors- Autocorrelation, Co-occurrence features, Runlength features, Fractal model based features, Gabor filter, wavelet features	8	CO-3
4	Registration and Image Fusion	Registration- Preprocessing, Feature selection-points, lines, regions and templates Feature correspondence-Point pattern matching, Line matching, region matching Template matching. Transformation functions- Similarity transformation and Affine Transformation. Resampling- Nearest Neighbour and Cubic Splines Image Fusion-Overview of image fusion, pixel fusion, Multi-resolution based fusion discrete wavelet transform, Curvelet transform. Region based fusion.	8	CO-4
5	3D Image Visualization	Sources of 3D Data sets, Slicing the Data set, Arbitrary section planes, The use of color, Volumetric display, Stereo Viewing, Ray tracing, Reflection, Surfaces, Multiply connected surfaces, Image processing in 3D, Measurements on 3D images	8	CO-5
	ce Books:			
		chard E. Woods, Digital Image Processing', Pearson, Education		
		entals of Digital Image Processing', Pearson Education, Inc., 2002		
3. Rick	S. Blum, Zheng Li	iu, Multisensor image fusion and its Applications, Taylor & Francis, 2006		

 4. John C.Russ, The Image Processing Handbook, CRC Press

 e-Learning Source:

 Digital Image Processing - Course (nptel.ac.in)

Image Signal Processing - Course (nptel.ac.in)

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of COs	s with PO	s and PSC	Os)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	2		1								2	2			1		
CO2	3	2		3		1							2		2			
CO3	2	2	3				1						2	3		2		
CO4	2	3	2	3										1	3	3		
CO5	3	2				3		1				2	3	2	1			

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2010	5-17												
Course Code	odeEC604Title of the CourseAdvanced NanoelectronicsLT												
Year	III	Semester	V	3	1	0	4						
Pre-Requisite	Nano	Co-requisite											
TTe-Requisite	Electronics	co-requisite											
	1. Developed understanding of fundamental ideas of Nanotechnology												
	2. Understand various synthesis techniques of nanomaterials.												
Course Objectives	3. To Dev	elop various classifi	cation of nanomaterials and its properties.										
	4. Develop various applications of nanomaterial with focus on medical aspect also.												
	5. Apply v	various characterizat	tion techniques on different materials.										

	Course Outcomes
CO1	1. Understanding of usage of Fundamental issue of nanotechnology.
	2. To know the various Limitations and downsides of nanotechnology.
	3. Evaluate nanotechnology application for its optimum performance.
CO2	1. Understand nanostructure science and technology.
	2. Understand various synthesis techniques of nanoparticles.
	3. Understand function of nanostructure material.
CO3	1. Understand various types of nanomaterials
	2. Develop knowledge about nanocomposites materials
	3. Understand the various applications of nanocomposites materials.
CO4	1. Develop knowledge about nanomedicines.
	2. Understand different types of nanomedicines
	3. Develop knowledge about nano sensor and scanning techniques.
CO5	1. Understanding of nanorobotics.
	2. Design nanorobotics and its controlling system.
	3. Develop knowledge of Nature's Nanorobotics devices
	4. Develop knowledge about various applications of nanorobotics in medicines.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	NANOTECHNOLOG Y AND REVOLUTION	Fundamental issues of Nanotechnology, Nanotechnology: fulfilling the basics, nanotechnology: aiding the Environment. Limits and Downsides, NASA applications, Nanotubes.	8	CO1
2	NANOSTRUCTURE MATERIALS	Nanostructure science and Technology, Nanoparticle synthesis strategies, Functional nanoscale devices.	8	CO2
3	NANOCOMPOSITES	Nanocomposites, Nanomaterial Additives, Nanocomposite classification system, Nanocomposites- Applications, Nanoclusters.	8	CO3
4	NANOMEDICINES	Prospect of Nanomedicine, Nanomedicine Taxonomy, nanomedicine, Nano sensors and Nanoscale scanning.	8	CO4
5	NANOROBOTICS	8	CO5	
Referen	ce Books:			
1)"Na	notechnology: A Gen	tle Introduction to the Next Big Idea", M. Ratner and D. Ratner, Pearson Education.		
2)"Na	notechnology – Scien	ce, Innovation, and Opportunity", L. E. Foster, Pearson Education.		
3)"Na Wiley	C1	in and easy way to explore the science of mater's smallest particles", Richard Booker a	nd Earl I	Boysen,
e-Lear	rning Source:			
https:/	//nptel.ac.in			
www.	youtube.com			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
СО																		
CO1	3	3	3	2	2	2	2	1					3	3				
CO2	3	3	2	2	2	2	2	2					2	3				
CO3	3	3	3	2	2	3	3	3					3	3				

CO4	3	3	3	2	2	3	3	3					3	3					
CO5	3	3	3	3	2	2	3	3					3	3					
	1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation																		
	Name & Sign of Program Coordinator											Sign & Seal of HoD							

Effective from Session:							
Course Code	EC605	Title of the Course	Current model VLSI Circuits and Applications	L	Т	Р	С
Year	2 nd	Semester	III	3	1		4
Pre-Requisite	Integrated Circuits	Co-requisite	VLSI Design				
Course Objectives							

	Course Outcomes
CO1	To learn the importance of analog signal processing and analog VLSI, and the advantage analog system of
	processing enjoys over the digital counterpart.
CO2	To learn the simple CM devices and their applications in systems as building blocks.
CO3	To learn the variety of CMOS amplifiers like gm based and other OTAs,
CO4	To learn the advanced analog techniques like translunearity in analog VLSI Design and current conveying devices,
	their generations, types and applications.
CO5	To learn the switched current (SI) techniques in analog/mixed signal design.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Currentmode	Overview of the digital systems,merits and demerits, considerations of speed, advantages of analog systems,CM/VM systems, Working of BJT and MOSFET, Subthreshold operation of the MOSFET, Bandwidth, power and f _T considerations, Source coupled circuits-characteristics and logic functions.	8	CO1
2	CM Devices	Introduction to current mirrors, circuit applications, cascade, high swing, regulated current mirrors, and performance, Principle of translinearity, devices, <u>structures, analysis and circuit applications</u> , Differential pair amplifier, characteristics, Applications.	8	CO2
3	Transcoductan ce amifiers	Introduction to Differential pair amplifier conductance, g _m cells and their characteristics, OTA, model characteristics, important features, Simple CMOS OTA circuits and their analysis, OTA signal processing applications	8	CO3
4	Advanced CM Devices	8	CO4	
5	Switched Techniques	8	CO5	
	ce Books:			
		Analog VLSI : Circuits and Principles, Pearson Ed.		
		rent Mode VLSI Analog Filters, Springer, India		
	11	LP CMOS Current Conveyors, Springer.		
		Tiez, Analog VLSI: Signal and Information Processing, McGrawwhill. MOS: Circuit Design, Layout and Simulation, J Wiley, India		
		Analog IC Design: the Current Mode Approach, IEE Circuits and Systems seri	es 2	
7. E		acio, LV LP IC Circuits and Systems: Low Voltage mixed Signal Circuits, IEE		ate
e-Lean	rning Source:			

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO-																		
PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO6	PSO7
CO																		
CO1	3	3	3	3									3	1	1			
CO2	3	3	2	1	1								3	2	1			

CO3	3	3	2	1	1					1	3	2	3	1	
CO4	3	3	3	1	2					1	3	3	3	1	
CO5	3	3	3	1	2					1	3	3	3	1	
					4 T	0	 • •	 	1 / 1						

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session:	Effective from Session:														
Course Code	EC 606	Title of the Course	DSP Structures for VLSI	L	Т	Р	С								
Year	2 nd	Semester	4 th	3	1		4								
Pre-Requisite		Co-requisite	VLSI Design												
Course Objectives	Adv. DSP.														

	Course Outcomes
CO1	To learn DSP Principles, Fourier analysis of signals and systems.
CO2	To learn H/W transformation techniques for efficient design and physical realizations.
CO3	To learn the fast processing algorithms, parallel processing and pipelining techniques for low power FIR filter
	designs.
CO4	To learn the Low power design of IIR Filters involving the techniques like pipelining and parallel processing.
CO5	To learn the manipulation of system in rounding of the filter coefficients to make them suitable for physical
	realization.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO		
1	Discrete Linear Systems	An overview of DSP concepts-Linear system theory, DFT, FFT, realization of digital filters. Typical DSP algorithms, DSP applications. Data flow graph representation of DSP algorithms.	8	CO1		
2	Retiming texhniques	Loop bound and iteration bound Retiming and its applications.	8	CO2		
3	LP FIR Design	8	CO3			
4	LP IIR Design	8	CO4			
5	Rounding and noise	\sim 1 mers Round ou noise computation tiging state variable description				
Referen	ce Books:					
1. Kesl	hab K Parthi, VLSI	Digital Signal Processing Systems, John-Wiley India.				
2. U. N	Aeyer Baese , Digita	al Signal Processing with FPGAs, Springer				
3. Digi Infor	ital Signal Processir mation Center.	ng Structures for VLSI (Very Large Scale Integration) Defense Technical				
e-Lear	rning Source:					

						С	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of COs	s with PO	s and PSO	Ds)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO6	PSO7
CO																		
CO1	3	2	1	1									3	3	1			
CO2	3	2	2	1									3	3	1			
CO3	3	2	3	2		1							3	3	2	1		
CO4	2	3	3	2		1							3	3	2	1		
CO5	2	3	3	2		1							3	3	3	1		

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session:	1				1	1							
Course Code	EC607	Title of the Course	Advanced Computer Architecture	L	Т	Р	С						
Year	II	Semester	III	3	1	0	4						
Pre-Requisite	Computer Organizatio n& Architectur e	Co-requisite											
Course Objectives	e To make students know about the Parallelism concepts in Programming . • To give the students an elaborate idea about the different memory systems and buses. • To introduce the advanced processor architectures to the students. • To make the students know about the importance of multiprocessor and multicomputers. • To study about data flow computer architectures.												

	Course Outcomes								
CO1	Demonstrate concepts of parallelism in hardware/software.								
CO2	Describe architectural features of advanced processors.								
CO3	Interpret performance of different pipelined processors.								
CO4	Explain data flow and hybrid in arithmetic algorithms								
CO5	Ilustrate parallel programming concepts.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		Multiprocessors and multi-computers. Multi-vector and SIMD computers. PRAM and VLSI Models. Conditions of parallelism. Program partitioning and scheduling. Program flow mechanisms. Parallel processing applications. Speed up performance law.	8	CO.1
2		Advanced processor technology. Superscalar and vector processors. Memory hierarchy technology. Virtual memory technology. Cache memory organization. Shared memory organization	8	CO.2
3		Linear pipeline processors. Non linear pipeline processors. Instruction pipeline design. Arithmetic design. Superscalar and super pipeline design. Multiprocessor system interconnects. Message passing mechanisms.	8	CO.3
4		Vector Processing principle. Multivector multiprocessorsCompound Vector processing.Principles of multithreading. Fine grain multicomputers. Scalable and multithread architectures.Dataflow and hybrid architectures.	8	CO.4
5		Multiprocessors and multi-computers. Multi-vector and SIMD computers. PRAM and VLSI Models. Conditions of parallelism. Program partitioning and scheduling. Program flow mechanisms. Parallel processing applications. Speed up performance law.	8	CO.5
Referen	ce Books:			
1. M.	J. Quinn, "Designin	g Efficient Algorithms for Parallel Computer", McGraw Hill		
e-Lear	rning Source:			
	1. <u>https://npt</u>	tel.ac.in		
	2. <u>www.yout</u>	ube.com		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	3	2	2	2	2		-	-	-	-	3	3	-	-	3	3
CO2	3	3	2	2	2	2	2		-	-	-	-	2	3	-	-	3	3
CO3	3	3	3	2	2		3		-	-	-	-	3	3	-	-	3	3
CO4	3	3	3	2	2		3		-	-	-	-	3	3	-	-	3	3
CO5	3	3	3	3	2	2			-	-	-	-	3	3	-	-	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Sign & Seal of HoD